

Chongqing University of Technology

Reported by Zhaoze Gao

HCL-TAT: A Hybrid Contrastive Learning Method for Few-shot Event Detection with Task-Adaptive Threshold

Ruihan Zhang^{1,2}, Wei Wei^{1,2}, Xian-Ling Mao³, Rui Fang⁴, Dangyang Chen⁴ ¹Cognitive Computing and Intelligent Information Processing (CCIIP) Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology ²Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL) ³Department of Computer Science and Technology, Beijing Institute of Technology ⁴Ping An Property & Casualty Insurance company of China, Ltd ruihanzhang@hust.edu.cn, weiw@hust.edu.cn, maoxl@bit.edu.cn fangrui051@pingan.com.cn, chendangyang273@pingan.com.cn

(EMNLP-2022)

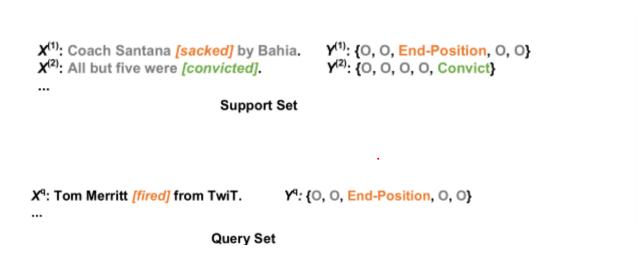
Chongqing University of Technology

ATAI Advanced Technique of Artificial Intelligence

1. Introduction

2. Approach

3. Experiments



Introduction

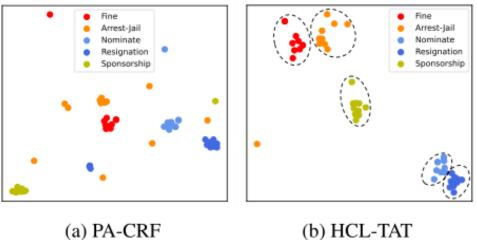
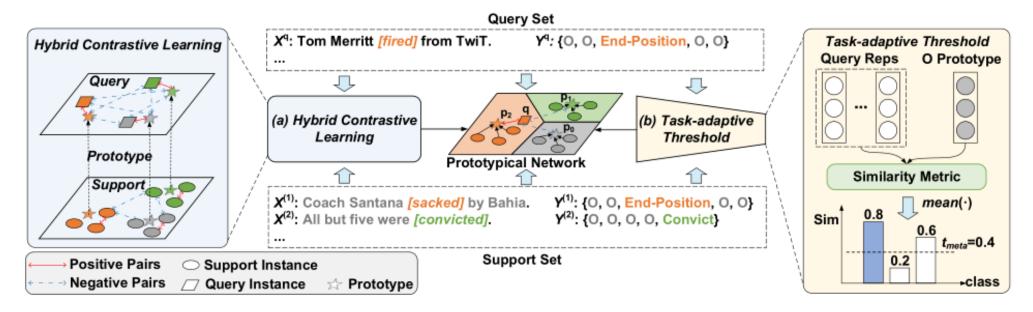
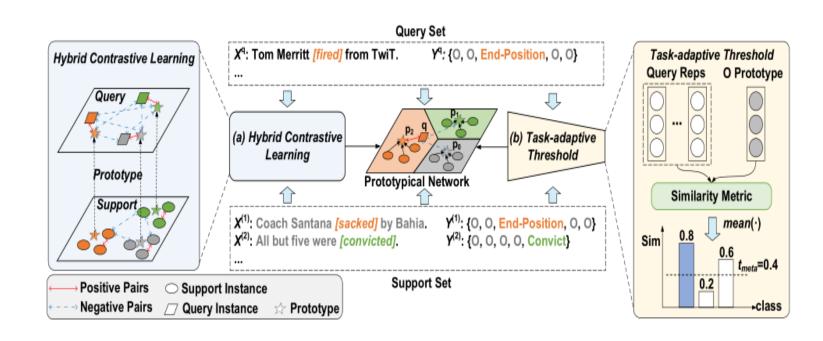
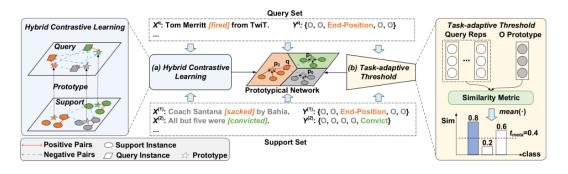


Figure 1: Visualization of triggers in the same episode on FewEvent test set. The left and right half shows support set representations without and with hybrid contrastive learning, respectively.

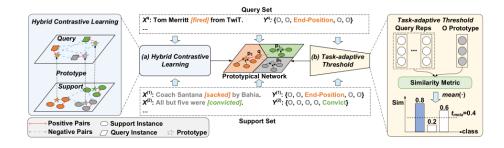

Figure 2: Overall framework of the proposed HCL-TAT model. HCL-TAT is based on a prototypical network, composed of two components: (a) hybrid contrastive learning including support-support contrastive learning and prototype-query contrastive learning; (b) task-adaptive threshold based on the logits in each episode.

$$\mathcal{X} = \{x_{1}, x_{2}, ..., x_{n}\}$$
$$\mathcal{Y} = \{y_{1}, y_{2}, ..., y_{n}\}$$
$$\mathcal{S} = \{\mathcal{X}^{(i)}, \mathcal{Y}^{(i)}\}_{i=1}^{N \times K}$$
$$\mathcal{Q} = \{\mathcal{X}^{(i)}, \mathcal{Y}^{(i)}\}_{i=1}^{N \times M}$$
$$\mathcal{T} = \{\mathcal{S}, \mathcal{Q}\}$$
$$\mathcal{T}_{train} = \{\mathcal{T}_{i}\}_{i=1}^{M_{train}}$$
$$\mathcal{T}_{test} = \{\mathcal{T}_{i}\}_{i=1}^{M_{test}}$$

$$\{\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_n\} = f(\mathcal{X}, \theta), \qquad (1)$$

$$\mathbf{p}_{c} = \frac{1}{K} \sum_{i \in \mathcal{S}(c)} \mathbf{h}_{i}, \ c = 0, 1, ..., N,$$
 (2)

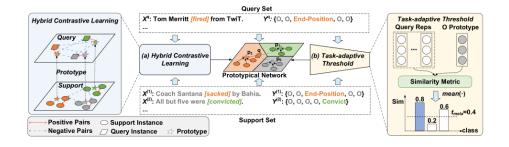
$$\mathcal{L}_{CE} = -\sum_{(x_i, y_i) \in \mathcal{Q}} \log P(y_i | x_i, \mathcal{S}), \quad (3)$$


$$P(y_i|x_i, \mathcal{S}) = \frac{\exp(-d(\mathbf{h}_i, \mathbf{p}_{y_i}))}{\sum_{c \in \mathcal{C}} \exp(-d(\mathbf{h}_i, \mathbf{p}_c))}, \quad (4)$$

$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{h}_i} = \frac{\sum_n \Delta_n (\mathbf{p}^n - \mathbf{p}^{pos})}{1 + \sum_n \Delta_n}, \quad (5)$$
$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{p}^n} = \frac{\Delta_n \mathbf{h}_i}{1 + \sum_n \Delta_n}, \\ \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{p}^{pos}} = -\frac{\sum_n \Delta_n \mathbf{h}_i}{1 + \sum_n \Delta_n},$$

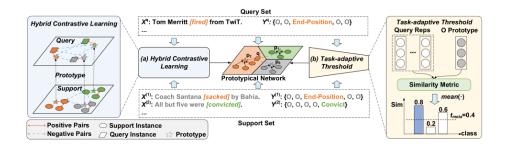
$$\overline{\mathbf{p}^n} \equiv \overline{1 + \sum_n \Delta_n}, \ \overline{\partial \mathbf{p}^{pos}} \equiv -\frac{1}{1 + \sum_n \Delta_n},$$
(6)

$$\Delta_n = \exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n} \cdot \mathbf{h}_{i} \cdot \mathbf{p}^{pos}).$$
 (7)



$$\tilde{\mathbf{h}}_i = \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{h}_i), \tag{8}$$

$$\mathcal{L}_{SSCL} = \sum_{(x_i, y_i) \in \mathcal{S}} \mathcal{L}_{SSCL_i}, \qquad (9)$$
$$\mathcal{L}_{SSCL_i} = -\log \frac{\exp(\tilde{\mathbf{h}}_i \cdot \tilde{\mathbf{h}}_j / \tau)}{\sum_{k \neq i} \exp(\tilde{\mathbf{h}}_i \cdot \tilde{\mathbf{h}}_k / \tau)}, \quad (10)$$


$$\mathcal{L}_{PQCL} = \sum_{c \in \mathcal{C}} \sum_{(x_i, y_i) \in \mathcal{Q}_c^{pos}} \mathcal{L}_{PQCL_c^i}, \quad (11)$$
$$\mathcal{L}_{PQCL_c^i} = -\log \frac{sim_c^i}{sim_c^i + \sum_{(x_k, y_k) \in \mathcal{Q}_c^{neg}} sim_c^k}, \quad (12)$$

$$sim_c^i = \exp(\mathbf{p}_c \cdot \tilde{\mathbf{h}}_i / \tau).$$
 (13)

$$t_{meta} = \frac{1}{|\mathcal{Q}|} \sum_{(x_i, y_i) \in \mathcal{Q}} P(y_i = 0 | x_i, \mathcal{S}). \quad (14)$$

$$\mathcal{L} = \mathcal{L}_{CE} + \alpha \mathcal{L}_{SSCL} + \beta \mathcal{L}_{PQCL}, \qquad (15)$$

$$\mathcal{L}_{CE} = -\log \frac{\exp(\mathbf{h}_{i} \cdot \mathbf{p}^{pos})}{\exp(\mathbf{h}_{i} \cdot \mathbf{p}^{pos}) + \sum_{n} \exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n})}$$

$$= -\log \frac{1}{1 + \sum_{n} \frac{\exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n})}{\exp(\mathbf{h}_{i} \cdot \mathbf{p}^{pos})}}$$

$$= \log(1 + \sum_{n} \frac{\exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n})}{\exp(\mathbf{h}_{i} \cdot \mathbf{p}^{pos})})$$

$$= \log(1 + \sum_{n} \exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n} - \mathbf{h}_{i} \cdot \mathbf{p}^{pos})),$$
(16)

$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{h}_{i}} = \frac{\sum_{n} \exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n} - \mathbf{h}_{i} \cdot \mathbf{p}^{pos}) |_{\mathbf{h}_{i}}}{1 + \sum_{n} \exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n} - \mathbf{h}_{i} \cdot \mathbf{p}^{pos})}$$
$$= \frac{\sum_{n} \exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n} - \mathbf{h}_{i} \cdot \mathbf{p}^{pos}) (\mathbf{p}^{n} - \mathbf{p}^{pos})}{1 + \sum_{n} \exp(\mathbf{h}_{i} \cdot \mathbf{p}^{n} - \mathbf{h}_{i} \cdot \mathbf{p}^{pos})}$$
$$= \frac{\sum_{n} \Delta_{n} (\mathbf{p}^{n} - \mathbf{p}^{pos})}{1 + \sum_{n} \Delta_{n}}.$$
(17)

$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{p}^n} = \frac{\Delta_n \mathbf{h}_i}{1 + \sum_n \Delta_n},\tag{18}$$

$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{p}^{pos}} = -\frac{\sum_{n} \Delta_{n} \mathbf{h}_{i}}{1 + \sum_{n} \Delta_{n}}.$$
 (19)

Model	5-way-5-shot	5-way-10-shot	10-way-5-shot	10-way-10-shot
LoLoss	31.51 ± 1.56	31.70 ± 1.21	30.46 ± 1.38	30.32 ± 0.89
MatchLoss	30.44 ± 0.99	30.68 ± 0.78	28.97 ± 0.61	30.05 ± 0.93
DMBPN	37.51 ± 2.60	38.14 ± 2.32	34.21 ± 1.45	35.31 ± 1.69
Proto-dot†	41.54 ± 3.82	42.21 ± 0.68	33.27 ± 2.37	39.23 ± 2.95
Match†	30.09 ± 1.71	48.10 ± 1.38	28.94 ± 1.15	45.91 ± 1.98
Proto [†]	47.30 ± 2.55	54.81 ± 2.27	42.48 ± 1.00	50.14 ± 0.65
Vanilla CRF	59.01 ± 0.81	62.21 ± 1.94	56.00 ± 1.51	59.35 ± 1.09
CDT	59.30 ± 0.23	62.77 ± 0.12	56.41 ± 1.09	59.44 ± 1.83
PA-CRF	62.25 ± 1.42	64.45 ± 0.49	58.48 ± 0.68	61.64 ± 0.81
HCL-TAT	66.96 ± 0.70	$\textbf{68.80} \pm 0.85$	$\textbf{64.19} \pm 0.96$	$\textbf{66.00} \pm 0.81$

Table 1: F1 scores (10^{-2}) of evaluated methods on FewEvent test set. † means the model is re-implemented by ourselves. The best scores are highlighted in boldface, with p < 0.02 under t-test.

Model	5-way-5-shot			5-way-10-shot		
niouoi	Р	R	F1	P	R	F1
HCL-TAT	62.63 ± 2.31	72.04 ± 1.93	$\textbf{66.96} \pm 0.70$	63.87 ± 2.35	74.65 ± 1.36	$\textbf{68.80} \pm 0.85$
w/o SSCL	59.61 ± 2.48	71.65 ± 1.72	65.03 ± 0.82	60.22 ± 4.78	74.38 ± 1.81	66.42 ± 2.34
w/o PQCL	57.50 ± 1.80	71.88 ± 1.52	63.85 ± 0.67	60.88 ± 2.18	72.63 ± 1.23	66.21 ± 1.14
w/o HCL	49.52 ± 4.34	74.67 ± 3.36	59.38 ± 2.59	57.72 ± 2.72	73.35 ± 1.10	64.57 ± 1.69
w/o TAT	46.69 ± 1.25	$\textbf{76.98} \pm 0.29$	58.12 ± 0.94	49.56 ± 1.11	76.33 ± 0.67	60.09 ± 0.92

Table 2: Precision, recall and F1 scores (10^{-2}) of ablation study results on FewEvent test set. When remove both HCL and TAT, the method degenerates to a Proto model.

Model	FSTI	FSED
PA-CRF		
HCL-TAT	68.18	66.96

Table 3: Average F1 scores (10^{-2}) of HCL-TAT and PA-CRF on FSTI and FSED tasks, on FewEvent test set under 5-way-5-shot setting.

ATA Advanced Technique of Artificial Intelligence

Experiments

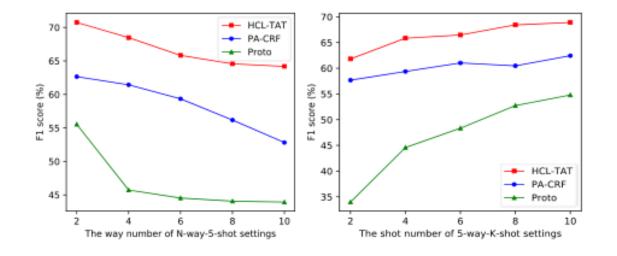


Figure 3: N-way-K-shot evaluations for three different models. The left part illustrates F1 scores in N-way-5-shot settings, and the right part illustrates F1 scores in 5-way-K-shot settings. We run each experiment once to analyze the tendency of F1 scores.

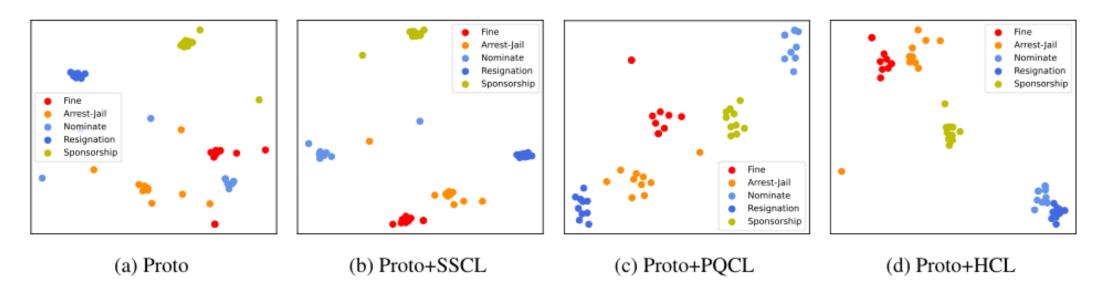


Figure 4: Visualization of trigger embeddings in the same episode on FewEvent test set, under 5-way-10-shot setting. From left to right, the visualization results of four FSED models are given respectively.

Subset	#Class	#Trigger	#Avg.Len
Train	80	69088	36.5
Valid	10	2274	38.6
Test	10	748	30.8

Table 4: The statistics of FewEvent Dataset. #Class, #Trigger and #Avg.Len denotes the number of classes, the number of triggers and the average length of sentences in each split part respectively.

Advanced Technique of Artificial Intelligence

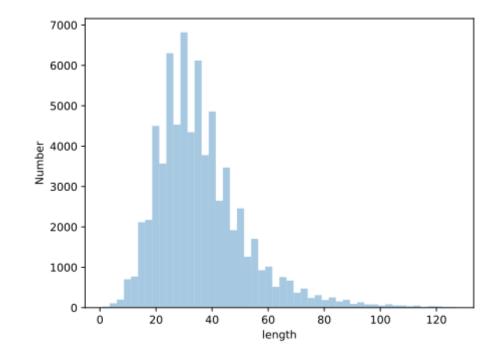


Figure 5: Length distribution of sentences in FewEvent dataset.

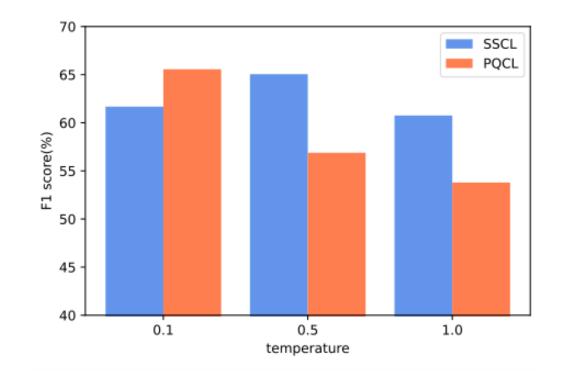


Figure 6: F1 scores (10^{-2}) over different temperature values on the two contrastive losses. The results are obtained under 5-way-5-shot setting in FewEvent test set.

Thank you!